Chapter 8

POLYNOMIAL EQUATIONS

An *n*th degree polynomial with complex coefficients is of the form

$$a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$$

where the a_i are complex numbers and $a_0 \neq 0$. (Of course, the coefficients $a_0, ..., a_n$ may be real numbers, since a real number is a special case of a complex number.)

Thus a first degree polynomial is of the form ax + b and a second degree polynomial of the form $ax^2 + bx + c$, with $a \ne 0$ in both cases. A non-zero constant a is a polynomial of degree zero; the constant zero is also a polynomial, but it is not assigned a degree.

The polynomial equation $y = x^2 - 6x + 1$ defines y to be a **function of x** on the domain of all complex numbers; that is, it provides a rule for assigning a unique complex number y to each complex number x. The table

х	4	3	2	1	0	i	2 <i>i</i>
$y = x^2 - 6x + 1$	-7	-8	-7	-4	1	-6 <i>i</i>	-3 - 12 <i>i</i>

shows that this functional rule assigns -4 to 1, 1 to 0, -6i to i, etc. A rule that makes y a function of x assigns precisely one value y to a fixed x; however, the same number y may be assigned to more than one x, as is seen here with -7 assigned to 2 and to 4.

It is sometimes convenient to represent the rule that defines y to be a function of x by the symbol f(x). This notation enables one to express in a simple way the number assigned to a given x by the function. For example, f(1), f(2), and f(3) stand for the numbers assigned to 1, 2, and 3, respectively. If $f(x) = x^2 - 6x + 1$, then f(1) = -4, f(2) = -7, f(3) = -8,

$$f(\sqrt{2}) = (\sqrt{2})^2 - 6(\sqrt{2}) + 1,$$

$$f(a + b) = (a + b)^2 - 6(a + b) + 1,$$

and

$$f(x + 1) = (x + 1)^2 - 6(x + 1) + 1.$$

Notice that f(a + b) is not necessarily the same as f(a) + f(b), since f(a + b) is the result of replacing x in x^2 - 6x + 1 by a + b and is *not* f times a + b.

If several functions are involved in a given discussion, one may use g(x), F(x), p(x), q(x), and so on, as alternates for f(x).

8.1 THE FACTOR AND REMAINDER THEOREMS

If an *n*th degree polynomial $p(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$ can be factored in the form

$$p(x) = a_0(x - r_1)(x - r_2)...(x - r_n), \ a_0 \neq 0,$$

then the roots of the polynomial equation p(x) = 0 are found by setting each of the factors equal to zero, since a product of complex numbers is zero if and only if at least one of the factors is zero. Therefore, the roots are $r_1, ..., r_n$. We wish to establish a form of converse to this result: we wish to show that if r is a root of a polynomial equation p(x) = 0 then it follows that x - r is a factor of p(x); that is p(x) can be expressed in the form

$$p(x) = (x - r)q(x)$$

where q(x) is a polynomial in x.

THE FACTOR THEOREM: Let

$$p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$

be a polynomial in x. If r is a root of p(x), that is, if p(r) = 0, then x - r is a factor of p(x).

Proof: Using the hypothesis that p(r) = 0, we have

$$p(x) = p(x) - 0$$

$$p(x) = p(x) - p(r)$$

$$p(x) = (a_0 x^n + a_1 x^{n-1} + \dots + a_n) - (a_0 r^n + a_1 r^{n-1} + \dots + a_n)$$

$$p(x) = a_0 (x^n - r^n) + a_1 (x^{n-1} - r^{n-1}) + \dots + (a_n - a_n).$$
(1)

Since x - r is a factor of $x^n - r^n$, $x^{n-1} - r^{n-1}$, and so on (see Example 2, Chapter 5), it follows that x - r is a factor of the entire right side of equation (1), and so is a factor of p(x).

We next use this theorem to obtain information concerning the case in which r is not a root of p(x).

THE REMAINDER THEOREM: Let p(x) be a polynomial. Then for every complex number r there is a polynomial q(x) such that

(2)
$$p(x) = (x - r)q(x) + p(r)$$

Proof: Let us define a new polynomial f(x) by

$$f(x) = p(x) - p(r)$$

Then f(r) = p(r) - p(r) = 0. Hence r is a root of f(x) and, by the Factor Theorem, above, x - r is a factor of f(x), and so there is a polynomial g(x) such that

$$f(x) = (x - r)q(x)$$

Now p(x) - p(r) = (x - r)q(x), since both sides are equal to f(x); equation (2) is then obtained by transposing p(r).

The polynomial p(r) is the **remainder** in the division of p(x) by x - r. In specific cases, the **quotient** polynomial q(x) of (2), above, may be found by long division or by a more compact form of division called synthetic division. We first illustrate these techniques on the example in which

$$p(x) = x^3 - 7x^2 + 4x + 9$$
, $r = 2$.

Dividing p(x) by x - 2, we have

This shows that

$$x^3 - 7x^2 + 4x + 9 = (x - 2)(x^2 - 5x - 6) - 3.$$

That is, p(x) = (x - 2)q(x) + p(2), with $q(x) = x^2 - 5x - 6$ and p(2) = -3. The synthetic form of the division is as follows:

The steps in this synthetic form of the division are explained in the treatment of the general case which follows.

The synthetic division of

$$p(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

by x - h is in the form

where $c_0 = a_0$, $b_1 = hc_0$, $c_1 = a_1 + b_1$, $b_2 = hc_1$, $c_2 = a_2 + b_2$, ..., $b_n = hc_{n-1}$, $c_n = a_n + b_n$. In general, each b is h times the previous c, $c_0 = a_0$, and each succeeding c is the sum of the a and b above it. The last c, c_n , is the value of p(h), and the other c's are the coefficients of q(x) in the formula p(x) = (x - h)q(x) + p(h); they give us the expression

$$p(x) = (x - h)(c_0 x^{n-1} + c_1 x^{n-2} + \dots + c_{n-2} x + c_{n-1}) + c_n.$$

Example 1. Express $p(x) = x^5 + 25x^2 + 7$ in the form (x + 3)q(x) + p(-3).

Solution: We note that h = -3 and that $a_0 = 1$, $a_1 = 0$, $a_2 = 0$, $a_3 = 25$, $a_4 = 0$, and $a_5 = 7$ in this problem. The synthetic division is therefore written

Hence:

$$x^5 + 25x^2 + 7 = (x+3)(x^4 - 3x^3 + 9x^2 - 2x + 6) - 11.$$

Example 2. Use synthetic division to show that 5 is a root of $p(x) = 2x^3 - 40x - 50 = 0$, and use this fact to solve the equation.

Solution: We divide p(x) by x - 5 with the object of showing that the remainder p(5) is zero. Thus:

This shows us that $p(x) = (x - 5)(2x^2 + 10x + 10)$. The roots of p(x) = 0 are therefore obtained from

$$x - 5 = 0$$
, $2(x^2 + 5x + 5) = 0$

as 5 and $(-5 \pm \sqrt{25 - 20})/2$; we have, then

5,
$$(-5 + \sqrt{5})/2$$
, and $(-5 - \sqrt{5})/2$.

Example 3. Let $f(x) = 9x^3 + x^2 - 7x + 4$. Find numbers a, b, c, and d such that

(3)
$$f(x) = a + b(x+1) + c(x+1)^2 + d(x+1)^3.$$

We give two solutions.

First solution: Letting x = -1 in (3), we see that a = f(-1). We therefore use synthetic division to express f(x) in the form (x + 1)g(x) + f(-1) and find that $g(x) = 9x^2 - 8x + 1$ and a = f(-1) = 3. Now (3) becomes

$$(x+1)(9x^2-8x+1)+3=3+b(x+1)+c(x+1)^2+d(x+1)^3.$$

On each side we subtract 3 and then divide by x + 1, thus obtaining

(4)
$$g(x) = 9x^2 - 8x + 1 = b + c(x+1) + d(x+1)^2.$$

Letting x = -1, we see that b = g(-1). We therefore treat g(x) as f(x) was treated above, and find that g(x) = (x + 1)(9x - 17) + 18. Hence b = 18. Then (4) becomes

$$(x+1)(9x-17) + 18 = b + c(x+1) + d(x+1)^2$$
.

This leads to

$$9x - 17 = c + d(x + 1)$$

or

$$9(x + 1) - 26 = c + d(x + 1)$$
.

Hence c = -26 and then d = 9.

Alternate solution: Let x + 1 = y. Then x = y - 1 and

$$f(x) = f(y-1) = 9(y-1)^3 + (y-1)^2 - 7(y-1) + 4.$$

Expanding and collecting like terms, we obtain

$$f(x) = 3 + 18y - 26y^{2} + 9y^{3}$$

= 3 + 18(x + 1) - 26(x + 1)^{2} + 9(x + 1)^{3}.

8.2 INTEGRAL ROOTS

Let the coefficients a_i of the polynomial equation

$$a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$$

be integers. Then it can be shown that the only possibilities for integral roots are the integral divisors of the last coefficient a_n . For example, an integer that is a root of

$$x^4 + x^3 + x^2 + 3x - 6 = 0$$

would have to be one of the eight integral divisors ± 1 , ± 2 , ± 3 , ± 6 of -6. Trial of each of these eight integers, as in Example 2 in Section 8.1, would show that 1 and -2 are the only integral roots. The work can be reduced, when one root is found, by substituting the quotient polynomial for the original polynomial in further work. Thus

shows that $x^4 + x^3 + x^2 + 3x - 6 = (x - 1)(x^3 + 2x^2 + 3x + 6)$. Hence, 1 is a root and the other roots are the roots of the equation $x^3 + 2x^2 + 3x + 6 = 0$.

8.3 RATIONAL ROOTS

We now consider a polynomial equation

$$a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n = 0, \quad a_0 \neq 0$$

of degree n with integer coefficients a_i . It can be shown that if there is a rational root p/q, with p and q integers having no common integral divisor greater that 1, then p must be an integral divisor of a_n and q must be an integral divisor of a_0 . For example, if the rational number p/q in lowest terms is a root of

$$6x^4 - x^3 - 6x^2 - x - 12 = 0$$

then p must be one of the twelve integral divisors ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 of -12 and q one of the integral divisors of 6. Without losing any of the possibilities, we may restrict q to be positive, that is, to be one of the integers 1, 2, 3, 6. The possible rational roots, therefore, are

$$\pm 1$$
, ± 2 , ± 3 , ± 4 , ± 6 , ± 12 , $\pm 1/2$, $\pm 3/2$, $\pm 1/3$, $\pm 2/3$, $\pm 4/3$, $\pm 1/6$.

Trials would show that 3/2 and -4/3 are the only rational roots.

Example. Prove that $\sqrt{2} + \sqrt{3}$ is not a rational number.

Solution: Let $a = \sqrt{2} + \sqrt{3}$. Then

$$a - \sqrt{2} = \sqrt{3}$$

$$a^{2} - 2\sqrt{2}a + 2 = 3$$

$$a^{2} - 1 = 2\sqrt{2}a$$

$$a^{4} - 2a^{2} + 1 = 8a^{2}$$

$$a^{4} - 10a^{2} + 1 = 0$$

Hence a is a root of x^4 - $10x^2$ + 1 = 0. This fourth degree polynomial equation has integer coefficients. The rule on rational roots tells us that the only possible rational roots are 1 and -1. Substituting, we see that neither 1 nor -1 is a root. Hence there are no rational roots. Since a is a root, it follows that a is not rational.

Problems for Sections 8.1, 8.2, and 8.3

- 1. Express $p(x) = x^4 + 5x^3 10x 12$ in the form (x + 2)q(x) + p(-2).
- 2. Express $f(x) = 5x^5 x^4 x^3 x^2 x 2$ in the form (x 1)g(x) + f(1).
- 3. Show that -1 is a root of $x^3 + 3x^2 2 = 0$, and find the other roots.

- 4. Show that 2 is a root of x^3 6x + 4 = 0, and find the other roots.
- 5. Find a, given that -4 is a root of $5x^6 7x^5 + 11x + a = 0$.
- 6. Find b, given that 3 is a root of $x^7 10x^5 + 8x^3 + 4x^2 3x + b = 0$.
- 7. Find all the integral roots of x^4 $2x^3$ x^2 4x 6 = 0, and then find the other roots.
- 8. Find all the integral roots of x^5 $8x^4$ + $15x^3$ + $8x^2$ 64x + 120 = 0, and then find the other roots.
- 9. Let $f(x) = (x a)^3 x^3 + a^3$. Find f(0) and f(a), and use this information to find two factors of f(x).
- 10. Let $g(x) = (x a)^5 x^5 + a^5$. Show that f(x) is divisible by x and by x a, and find the other factors.
- 11. Find all the integral roots of $3x^4 + 20x^3 + 36x^2 + 16x = 0$, and then find the other roots.
- 12. Let $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x$; that is, let $a_n = 0$. Also, let the a_i be integers. Show that any non-zero integral root of f(x) = 0 is an integral divisor of a_{n-1} .
- 13. Find a rational root of $3x^3 + 4x^2 21x + 10 = 0$, and then find the other roots.
- 14. Find all the roots of $6x^4 + 31x^3 + 25x^2 33x + 7 = 0$.
- 15. Find all the roots of $81x^5 54x^4 + 3x^2 2x = 0$.
- 16. Let $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x$ with the a_i integers. State a necessary condition for a non-zero rational number to be a root of f(x) = 0.
- 17. Given that *a* and *b* are integers, what are possibilities for rational roots of $x^3 + ax^2 + bx + 30 = 0$?
- 18. Let $f(x) = x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ with the a_i integers. Note that $a_0 = 1$. Show that any rational root of f(x) = 0 must be an integer.
- 19. Let f(x) be a polynomial. Let r and s be roots of f(x) = 0 and let $r \ne s$. Show that there exist polynomials g(x) and h(x) such that all of the following are true:
 - (a) f(x) = (x r)g(x).
 - (b) g(s) = 0.
 - (c) g(x) = (x s)h(x).
 - (d) f(x) = (x r)(x s)h(x).

- 20. Let f(x) = 0 be a polynomial equation with distinct roots r, s, and t. Show that f(x) = (x r)(x s)(x t)p(x), with p(x) a polynomial.
- 21. Prove that if $r_1, r_2..., r_n$ are distinct roots of a polynomial equation f(x) = 0, then f(x) is a multiple of $(x r_1)(x r_2)...(x r_n)$.
- 22. Prove that $\sqrt{3} \sqrt{2}$, $\sqrt{2} \sqrt{3}$, and $-\sqrt{2} \sqrt{3}$ are all irrational.
- 23. Prove that $\sqrt{5} + \sqrt{3}$, $\sqrt{5} \sqrt{3}$, $-\sqrt{5} + \sqrt{3}$, and $-\sqrt{5} \sqrt{3}$ are all irrational.
- 24. Prove that $\sqrt[3]{14}$ is irrational.
- 25. Find an eighth-degree polynomial equation with integer coefficients that has $\sqrt{2} + \sqrt{3} + \sqrt{7}$ as a root.
- 26. If f(x) is a function of x, the notation $\Delta f(x)$ represents f(x+1) f(x). Show that $\Delta x^2 = 2x + 1$ and $\Delta x^3 = 3x^2 + 3x + 1$.
- 27. Let $\Delta f(x) = f(x+1) f(x)$. Find $\Delta f(x)$ for each of the following:
 - (a) f(x) = a + bx.
 - (b) $f(x) = a + bx + cx^2$.
 - (c) $f(x) = a + bx + cx^2 + dx^3$.
 - (d) $f(x) = x^n$, with n a positive integer.
- 28. Find f(x + 2) 2f(x + 1) + f(x) for:
 - (a) f(x) = a + bx.
 - (b) $f(x) = a + bx + cx^2$.
- 29. Find f(x + 3) 3f(x + 2) + 3f(x + 1) f(x) for:
 - (a) f(x) = a + bx.
 - (b) $f(x) = a + bx + cx^2$.
 - (c) $f(x) = a + bx + cx^2 + dx^3$.
- 30. Let $\Delta^n f(x)$, with *n* a positive integer, be defined inductively by

$$\Delta^{1}f(x) = \Delta f(x) = f(x+1) - f(x),
\Delta^{2}f(x) = \Delta[\Delta f(x)] = \Delta[f(x+1) - f(x)]
= [f(x+2) - f(x+1)] - [f(x+1) - f(x)],
\Delta^{3}f(x) = \Delta[\Delta^{2}f(x)],
...,
\Delta^{m+1}f(x) = \Delta[\Delta^{m}f(x)],$$

[The function $\Delta^n f(x)$ is called the *n*th difference of f(x).] Show that

$$\Delta^n f(x) = \sum_{k=0}^n (-1)^k \binom{n}{k} f(x+n-k).$$

- 31. Let $\Delta^n f(x)$ be defined as in Problem 30 above and show:
 - (a) $\Delta^n f(x) = 0$, if f(x) is a polynomial of degree less than n.

(b)
$$\Delta^n f(x) = n! a_0$$
, if $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$.

- 32. Let $f(x) = a + bx + cx^2$. Let r = f(0), s = f(1) f(0), and t = f(2) 2f(1) + f(0).
 - (a) Show that f(x) = r + sx + tx(x 1)/2.
 - (b) Generalize this problem.
- 33. Let $f(x) = 5x^4 6x^3 3x^2 + 8x + 2$. Use repeated synthetic division to find numbers a, b, c, d, and e such that

$$f(x) = a + b(x - 2) + c(x - 2)^{2} + d(x - 2)^{3} + e(x - 2)^{4}.$$

- 34. Use the method of the alternate solution for Example 3 in Section 8.1 to do Problem 33.
- 35. Let $f(x) = x^3 + ax^2 + bx + c$, and let a, b, c, and r be complex numbers. Show that

$$f(x) = f(r) + (3r^2 + 2ar + b)(x - r) + s(x - r)^2 + (x - r)^3,$$

and express s in terms of a and r.

36. Let $f(x) = x^3 + ax^2 + bx + c$, and let r be a root of f(x) = 0. Show that f(x) is divisible by $(x - r)^2$ if and only if $3r^2 + 2ar + b = 0$.

- 37. Let $f(x) = x^3 + ax^2 + bx + c$, $g(x) = 3x^2 + 2ax + b$, and h(x) = 6x + 2a. Show that $f(x) = (x r)^3$ if and only if f(r) = g(r) = h(r) = 0.
- 38. Let $f(x) = x^4 + ax^3 + bx^2 + cx + d$. Find s, t, and u in terms of a, b, c, and r such that

$$f(x) = f(r) + s(x-r) + t(x-r)^2 + u(x-r)^3 + (x-r)^4.$$

39. Do the methods of this chapter enable you to solve x^3 - 3x + 1 = 0?

8.4 SYMMETRIC FUNCTIONS

If we multiply out (x - a)(x - b)(x - c)(x - d), we obtain an expression of the form $x^4 - s_1x^3 + s_2x^2 - s_3x + s_4$, where

$$s_1 = a + b + c + d,$$

 $s_2 = ab + ac + ad + bc + bd + cd,$
 $s_3 = abc + abd + acd + bcd,$
 $s_4 = abcd.$

We note that s_k is the sum of all products of a, b, c, and d taken k at a time. It is also clear that the s_k are **symmetric functions** of a, b, c, and d; that is, they do not change value when any two of a, b, c, and d are interchanged.

The **Fundamental Theorem of Algebra**, the proof of which is too advanced for this book, states that the general *n*th degree polynomial with complex coefficients

$$a_0x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n, \quad a_0 \neq 0$$

has a factorization into linear factors

$$a_0(x - r_1)(x - r_2) \dots (x - r_n)$$

where the r_i are complex numbers. One can then see that $(-1)^k a_k/a_0$ is the sum of all the products of k factors chosen from $r_1, r_2, ..., r_n$.

The <u>absolute value</u> of a real number x is written as |x| and is defined as follows: If $x \ge 0$, then |x| = x; if x < 0, then |x| = -x.

Problems for Section 8.4

1. Let $3(x - r)(x - s) = 3x^2 - 12x + 8$. Find the following:

(a)
$$r + s$$
.

(d)
$$r^2 + s^2$$
.

(e)
$$r^2 - 2rs + s^2$$
.

(c)
$$(r+s)^2$$
.

(f)
$$|r - s|$$
.

- 2. Find the sum, product, and absolute value of the difference of the roots of $5x^2 + 7x 4 = 0$.
- 3. Let $(x r)(x s) = x^2 + x + 1$. Show the following:
 - (a) r = -(s+1), s = -(r+1).
 - (b) $r^3 + r^2 + r = 0 = s^3 + s^2 + s$.
 - (c) $r = s^2$, $s = r^2$.
 - (d) $r^{-1} + s^2 = -1$, $s^{-1} + r^2 = -1$.
 - (e) $r^4 + r^{-1}s^{-1} + s^4 = 0$.
 - (f) $r^9 r^6 + r^3 1 = 0 = s^9 s^6 + s^3 1$.
 - (g) $r^{10} + s^7 + r^4 + s = -2 = s^{10} + r^7 + s^4 + r$.
 - (h) $(r^2 r + 1)(s^2 s + 1)(r^4 r^2 + 1)(s^4 s^2 + 1) = 16$.
- 4. Let r be a root of $x^2 + x + 1 = 0$. Show the following:
 - (a) $x^3 a^3 = (x a)(x ar)(x ar^2)$.
 - (b) $x^3 + y^3 + z^3 3xyz = (x + y + z)(x + ry + r^2z)(x + r^2y + rz)$.
- 5. Let a, b, and c be the roots of $x^3 + 3x + 3 = 0$. Find (a + 1)(b + 1)(c + 1).
- 6. Given that $(x a)(x b) = x^2 px + q$, express each of the following in terms of p and q:
 - (a) a + b.
 - (b) *ab*.
 - (c) $a^2 + 2ab + b^2$.
 - (d) $a^2 + ab + b^2$.
 - (e) $ab(a^2 + ab + b^2)$.
 - (f) a^3b^3 .
 - (g) The coefficients of the expansion of $(x a^2)(x ab)(x b^2)$.
- 7. Let $(x r)(x s) = x^2 px + q$, and let $(x r^3)(x r^2s)(x rs^2)(x s^3) = x^4 ax^3 + bx^2 cx + d$. Express a, b, c, and d in terms of p and q.
- 8. Let $(x a)(x b) = x^2 ex + f$, $(x c)(x d) = x^2 gx + h$, and $(x ac)(x ad)(x bc)(x bd) = x^4 px^3 + qx^2 rx + s$. Find p, q, r, and s in terms of e, f, g, and h.
- 9. Let $(x a)(x b)(x c) = x^3 3x + 1$. Find each of the following:
 - (a) 2(a+b+c).
 - (b) (a+b)(a+c) + (a+b)(b+c) + (a+c)(b+c).
 - (c) (a+b)(a+c)(b+c).
 - (d) the equation $y^3 py^2 + qy r = 0$ whose roots are a + b, a + c, and b + c.
- 10. Do Problem 9 with $(x a)(x b)(x c) = x^3 + 3x 1$.

- 11. Let $s_1 = a + b + c$, and $s_2 = ab + ac + bc$, and $s_3 = abc$. Find numbers x, y, z, t, u, v, and wsuch that for all a, b, and c:

 - (a) $a^3 + b^3 + c^3 = xs_3 + ys_1s_2 + zs_1^3$. (b) $a^4 + b^4 + c^4 = ts_1s_3 + us_2^2 + vs_1^2s_2 + ws_1^4$.
- 12. Let $(x r)(x s)(x t) = x^3 ax^2 + bx c$. Express $r^5 + s^5 + t^5$ in terms of a, b, and c.
- 13. Let $(x-1)(x-2)(x-3)...(x-n) = x^n s_1 x^{n-1} + s_2 x^{n-2} ... + (-1)^n s_n$. Show the following:
 - (a) $s_1 = \binom{n+1}{2}$.
 - (b) $s_n = n!$.
 - (c) $2s_2 = (1^3 + 2^3 + ... + n^3) (1^2 + 2^2 + ... + n^2)$.